Exam-like questions: fuzzy sets

1. For the concepts below identify those that would benefit from fuzzy set based modeling; Characterize them.
 a) Real numbers close to 1;
 b) Real numbers very close to 1;
 c) Real numbers extremely close to 1;
 d) Odd integers lower than 5;

2. Characterize a set that represents the following notion
 a) Hot day; ELQ-fuzzy1.pdf
 b) Normal car engine temperature;
 c) Gravity acceleration;
 d) Tall Portuguese person;
 e) Tall Chinese woman.

3. Consider the following fuzzy sets both defined on $X = \{0, 1, 2, 3\}$ and the standard fuzzy set theory (i.e., intersession modelled by \min, union modelled by \max, and complement given by $n(x) = 1-x$).

 \[
 A = \{(0, 1), (1, 0.7)\} \\
 B = \{(0, 0.6), (1, 0.9), (3, 1)\}
 \]

 Compute and visualize the results of the following operations:
 i) Complement(A), Complement(B);
 ii) $A \cup B$, $B \cup A$
 iii) $A \cap B$, $A \cap \text{complement}(B)$
 iv) $A \times B$, $B \times A$

4. (Klir and Folger, 1988) Let A, B, and C be fuzzy sets define on $X=[0,10]$, with membership functions:

 $\mu_A(x) = x/(x+2)$;
 $\mu_B(x) = 2^{-x}$;
 $\mu_C(x) = 1/(1+10(x-2)^2)$

 Compute and visualize the results of the following operations:
 i) $\bar{A}, \bar{B}, \bar{C}$
 ii) $A \cup B$, $A \cup C$, $A \cup C$
 iii) $A \cap B$, $A \cap C$, $A \cap C$
 iv) $A \cup B \cup C$
 v) $A \cap B \cap C$
 vi) $A \cap B$
5. Let $X = \{x_1, x_2, x_3, x_4, x_5, x_6\}$ the fuzzy sets A, B defined on X, s.t., $A = (0.2, 0.6, 0.7, 0.9, 1.0, 1.0)$ and $B = (0.0, 0.0, 1.0, 0.4, 0.6, 0.0)$

a) Compute the alpha-cuts for alpha equal to 0.2, 0.6, and 1.0;
b) Compute the scalar cardinality and the fuzzy cardinality of A and B;
c) Classify A and B relatively to their convexity;
d) Verify that $A \cap \tilde{A}$ is different from the empty set and that $A \cup \tilde{A}$ is different from X in standard fuzzy set theory.

6. If union is modelled by the triangular co-norm $s(x,y) = x + y - xy$, compute the dual De Morgan expression for modelling intersession.

7. Show that $n(x) = (1-x)/(1+ax)$, for $a>-1$ is involutive.

8. Which, if any, of the following functions can be used as fuzzy complete? Briefly justify
a) $f(x) = \cos(x)$;
b) $g(x) = \sin^2(x)$;
c) $h(x) = \cos(\pi/2 \times x)$;

9. Consider the axiomatic skeleton of triangular norms t and co-norms s. Show that, for all x, y in $[0,1]$,
a) $t(x, 1) = x$;
b) $t(x, 0) = 0$;
c) $s(x, 0) = x$;
d) $s(x, 1) = 1$;
e) $t (x, y) \leq \min (x, y)$;
f) $s(x, y) \geq \max(x, y)$;

10. Consider the axiomatic skeleton of triangular norms t and co-norms s. Compute the expressions for
a) the lower triangular norm, $t_{\text{min}}(x,y)$;
b) the largest triangular co-norm, $s_{\text{max}}(x,y)$.