An integrated framework for combining gist vision with object segregation, categorisation and recognition

J. Rodrigues[1], D. Almeida[1], J.A. Martins[1], R. Lam[1], J.M.H. du Buf[1] ([1] Institute for Systems and Robotics, Vision Laboratory, University of the Algarve, Campus de Gambelas FCT-DEEI, 8000-810 Faro, Portugal; jrodrig@ualg.pt)

There are roughly two processing systems: (1) very fast gist vision of entire scenes, completely bottom-up and data driven, and (2) Focus-of-Attention (FoA) with sequential screening of specific image regions and objects. The latter system has to be sequential because unnormalised input objects must be matched against normalised templates of canonical object views stored in memory, which involves dynamic routing of features in the visual pathways. A recently developed architecture provides a framework to combine gist and FoA for obtaining object segregation, categorisation and recognition by a dynamic process in which coarse-scale information is applied first, after which progressively finer scales are added for refining the process. This model employs multiscale keypoints based on end-stopped cells (Rodrigues and du Buf, 2006 BioSystems 86 75-90) for FoA and dynamic routing, complemented by the multiscale line and edge representation extracted from responses of simple and complex cells to validate different categorisation levels. This architecture is now being extended with colour and texture (du Buf, 2007 Image and Vision Computing 25 873-882).

[FCT funding of ISR-IST with POS-Conhecimento and FEDER; FCT project PTDC-EIA-73633-2006 SmartVision]