Optoelectronic Integrated Chips employing Resonant Tunnelling Diodes

C. N. Ironsidea, J. M. L. Figueiredob, B. Romeirab, T. J. Slighta,

aDepartment of Electronics and Electrical Engineering, University of Glasgow, Glasgow G12 8LT, United Kingdom

bCentro de Electrónica, Optoelectrónica e Telecomunicações, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
Introduction

- Currently, in many optoelectronic systems the
optoelectronic chip is made from an epilayered,
heterostructured III-V semiconductor and the purely
electronic part of the system is made from silicon.
- With optoelectronic integrated circuits (OEICs) the aim is to
integrate some of the electronic functionality onto the III-V
semiconductor chip
- In the emerging mass markets of fibre to the home and
ubiquitous high bandwidth wireless access then all the
benefits integration will be important, particularly low
power and cost.
Outline

- Resonant Tunnelling Diode (RTD) operation principle – the physics behind the negative differential resistance (NDR).
- The Resonant-Tunelling Diode integrated with a laser diode
- The nonlinear dynamics of RTD-LD
- The applications wireless/optical interface and chaos generation
- The resonant tunnelling diode in an optical waveguide and the RTD-OW and the closely related RTD photodiode (RTD-PD).
- Conclusions
The Resonant Tunneling Diode: the epilayer structure

- Emitter
- InGaAs
- AlAs
- InGaAs
- Collector
- InGaAs
- AlAs
- InGaAs

10nm

InP substrate

One monolayer = 0.5nm

Lowest conduction band energy

Energy

z
Tunneling through resonant states
The current voltage curve and negative differential resistance
The measured I-V curve for a RTD

Oscillation in the NDR region
Oscillations up to 831 GHz

The Resonant Tunneling diode laser diode (RTD-LD) – semiconductor layers

- **n-type**
- **i-type**
- **p-type**

Injected current

Metal n-contact

RTD

Active light emission region

Metal p-contact
The details of the RTD-LD Wafer Design

<table>
<thead>
<tr>
<th>Layer no.</th>
<th>Material</th>
<th>Comp. fraction</th>
<th>Thickness µm/ Å</th>
<th>Doping type</th>
<th>Doping conc.</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wafer</td>
<td>InP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>InGaAs</td>
<td>X=0.53</td>
<td>0.2µm</td>
<td>p</td>
<td>5*10¹⁸cm⁻³</td>
<td>Bottom contact layer</td>
</tr>
<tr>
<td>2</td>
<td>InAlAs</td>
<td>X=0.52</td>
<td>1 µm</td>
<td>p</td>
<td>5*10¹⁷cm⁻³</td>
<td>Cladding</td>
</tr>
<tr>
<td>3</td>
<td>InₓAlᵧGa₁₋ₓ₋ᵧAs</td>
<td>X=0.53 Y=0.20</td>
<td>0.25 µm</td>
<td>i</td>
<td></td>
<td>Waveguiding core</td>
</tr>
<tr>
<td>4</td>
<td>Active Layer</td>
<td>i</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>InₓAlᵧGa₁₋ₓ₋ᵧAs</td>
<td>X=0.53 Y=0.20</td>
<td>0.25 µm</td>
<td>i</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>InAlAs</td>
<td>X=0.52</td>
<td>1 µm</td>
<td>n</td>
<td>5*10¹⁷cm⁻³</td>
<td>Cladding</td>
</tr>
<tr>
<td>7</td>
<td>InₓGa₁₋ₓAs</td>
<td>X=0.53</td>
<td>0.1µm</td>
<td>n</td>
<td>1*10¹⁸cm⁻³</td>
<td>Laser isolation contact</td>
</tr>
<tr>
<td>8</td>
<td>InGaAs</td>
<td>X=0.53</td>
<td>20 Å</td>
<td>i</td>
<td></td>
<td>Spacer</td>
</tr>
<tr>
<td>9</td>
<td>AlAs</td>
<td></td>
<td>25Å</td>
<td>i</td>
<td>Barrier (strained)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>InGaAs</td>
<td>X=0.53</td>
<td>50Å</td>
<td>i</td>
<td>Quantum well</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>AlAs</td>
<td></td>
<td>25Å</td>
<td>i</td>
<td>Barrier (strained)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>InGaAs</td>
<td>X=0.53</td>
<td>20Å</td>
<td>i</td>
<td>Spacer</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>InGaAs</td>
<td>X=0.53</td>
<td>0.1µm</td>
<td>n</td>
<td>1*10¹⁸cm⁻³</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>InGaAs</td>
<td>X=0.53</td>
<td>0.2µm</td>
<td>n</td>
<td>5*10¹⁸cm⁻³</td>
<td>Cap layer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quantum wells</th>
<th>Material</th>
<th>Comp. fraction</th>
<th>Thickness Å/ ML</th>
<th>Doping type</th>
<th>Doping conc.</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>InₓGa₁₋ₓAs</td>
<td>X=0.53</td>
<td>67 Å</td>
<td>i</td>
<td></td>
<td>Quantum well (*6)</td>
</tr>
<tr>
<td>2</td>
<td>InₓAlᵧGa₁₋ₓ₋ᵧAs</td>
<td>X=0.53 Y=0.20</td>
<td>90 Å</td>
<td>i</td>
<td></td>
<td>Barrier (*5)</td>
</tr>
</tbody>
</table>
Integrated RTD-LD Chip layout

- 3µm wide laser ridge
- 22µm wide ridge
- p-type contact
- n-type contact
- Silica Insulating Layer 3µm wide laser ridge
- Semi-insulating substrate
- Heavily p-doped InGaAs contact layer
- Laser emission
- Laser active region
- RTD
Scanning Electron Microscope Images of a RTD-LD device

- Scanning electron microscope images of the bare etched wafer and completed device.

Etched wafer - laser ridge and contact ridge

Complete device - inset shows 3µm ridge detail.
Monolithically Integrated Device- results

- CW results from a 500µm cavity length ridge waveguide laser cooled to 130K. Fig 1 shows current vs voltage, fig 2 shows Log optical power vs voltage.
- There is clear hysteresis in both the current and optical power.
- The hysteresis loop is wide (~1.5V) and the optical power on-off ratio is approximately 20dB.
The monolithic RTD-LD -> Hybrid RTD-LD

- The monolithic RTD-LD showed hysteresis – good for NRZ operation - but no oscillation and only pulsed room temperature operation.
- To gain a further insight into the operation of RTD-LD we moved to a hybrid version – with a RTD chip and a LD chip connected by a bond wire.
- The work we now present is based on the hybrid version.
- From this work it was clear the monolithic version had a large series resistance probably a contact resistance – thus heating and hysteresis.
The hybrid RTD–LD

Current-voltage (I-V) characteristics

Voltage controlled oscillator

NOC Faro June 10
Hybrid RTD-LD electrical characteristics
Hybrid RTD-LD Optoelectronic oscillations

Electrical output

Optical output
Linear versus Nonlinear analysis of oscillators

- RTD have a highly nonlinear current voltage characteristic.
- All oscillators are nonlinear and involve amplifier plus feedback.
- One nonlinear effect always present is that the amplifier is driven into saturation and there may be other nonlinear effects.

<table>
<thead>
<tr>
<th>Linear analysis</th>
<th>Nonlinear analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple to implement</td>
<td>More complicated to implement</td>
</tr>
<tr>
<td>Predicts: approximately the oscillation frequency</td>
<td>Predicts: oscillation frequency, output power, output waveform; synchronisation, chaos</td>
</tr>
</tbody>
</table>
The nonlinear analysis of the RTD-OEICs

• Van der Pol Oscillator had been implemented before for negative differential resistance devices.

• Liénard’s Oscillator is a generalisation of the The Van der Pol oscillator and allowed us to predict the Voltage frequency curve (VCO), the synchronisation and chaos behaviour.

• Synchronisation is particularly important for the Wireless/Optical interface application and the operation of the RTD-LD as a Injection Locked Oscillator (ILO).
Nonlinear dynamics of the RTD-LD

The circuit can be described by the following equations:

\[\frac{dV(t)}{dt} = \frac{i(t) - F(V)}{C} \]

\[\frac{di(t)}{dt} = \frac{V_b - Ri(t) - V(t)}{L} \]

Which are equivalent to the Liénard’s second-order differential equation:

\[\ddot{V}(t) + H(V)\dot{V}(t) + G(V) = 0 \]

Laser model introduced through single mode rate equations
RTD-LD The Optoelectronic Voltage Controlled Oscillator (VCO)
Synchronisation and the Injection Locked Oscillator

- Synchronisation is well known phenomena in nonlinear dynamics
- Using the RTD-LD we could apply this wireless to optical conversion
- Wireless signals are often phase modulated – phase shift keyed (PSK) – a small injected signal (-40dB compared to the output) controls the phase of the RTD-LD and thus the phase of the optical sub-carrier
- Digital information can be transferred from the wireless to the optical domain
RTD-LD injection locked oscillator

- Nonlinear dynamical system based on the Liénard’s driven oscillator and laser diode single mode rate equations.

Electrical model:

\[
\begin{align*}
\dot{V} &= \frac{1}{C}[I - F(V)] \\
\dot{I} &= \frac{1}{L}[-RI - V + V_{DC} - V_{TH} + V_{AC}\sin(2\pi f_{in}t)]
\end{align*}
\]

Liénard’s driven oscillator

\[\ddot{V}(t) + H(V)\dot{V}(t) + G(V) = V_{AC}\sin(2\pi f_{in}t)\]
Injection locking

- Experimental synchronization in the laser output
Liénard’s RTD-LD 2D Synchronization Map

- RTD-LD frequency locking structure showing the Arnold Tongues map: a comparison of theory with experimental results

- $f_{in}/1$ - when the injected wireless signal is at the same frequency as the natural oscillation frequency

- $f_{in}/2$ - when the injected wireless signal is twice the frequency of the natural oscillation

- The y axis is the amplitude of the injected wireless signal
Adler’s equation – the short version of Arnold’s tongues

\[\Delta f = \frac{f_0}{2Q} \sqrt{\frac{P_{\text{inj}}}{P_0}} \]

\(\Delta f \) – locking range
\(f_0 \) – oscillator frequency
\(P_{\text{inj}} \) – power of injected signal
\(P_0 \) – output power of oscillator
\(Q \) – oscillator quality factor
The optoelectronic interface includes the RTD-LD electric-to-optic (E/O) converter and patch antenna for RF broadcasting.

- The RTD-LD responds to the wireless electromagnetic radiation which is amplified by the negative conductance.
- The optical fibre delivers microwave broadcasted signals.

Microwave to optical conversion

- RF generator
- 1.4 V
- Patch antenna
- Wireless RF Emission
- 3 GHz
- d. c. bias
- Shunt Capacitor
- RTD
- Microstrip line
- Au
- Laser Diode
- Printed Circuit Board
- Measurement Setup
- SCOPE/Spectrum Analyzer
- RF output
- 50 Ω
- Optical Signal
- PD
- 50 Ω
Analogue Phase Modulation

- The laser diode output, locked with a broadcasted signal, shows the same modulation features of the injected signal with the same sidebands at 1 MHz offset of the radio frequency sub-carrier.

- Most digital wireless signals are phase shift keyed (PSK) and so, because of the fixed phase relationship, the phase synchronization of the RTD-LD can be used to translate the digital information from the wireless to the optical domain.
RoF network based on W-O RTD-LD

In the Radio over Fiber (RoF) network the pico-cell base station consists of a microwave-optical interface circuit combining an electric-to-optic (E-O) converter, the RTD-LD.

Base Station (BS)

RTD-LD (E/O)

Control Station (CS)

Up-link RF in

E/O: Electric-to-Optic Converter

Optical Signal

NOC Faro June 10
The Wireless/Optical interface
Embedding a RTD within an optical waveguide core we obtained an electro-absorption modulator/photo-detector (RTD-EAM/RTD-OWPD).

Wafer structure

Energy-band diagram

Current voltage characteristic

Operation as photo-detector (RTD-OWPD)
RTD-PD optical-to-RF interface

- The RTD-PD interface characterization setup includes patch antennas for directional wireless emission-reception.
Optical to wireless synchronisation

RTD-OW free-running oscillation and locking to a 1530 nm optical signal modulated by an RF signal at 600 MHz.
The driven RTD-LD – chaos generation

(a) Coupling strength, V_{ac}/V_p

(b) Largest Lyapunov exponent, λ_1

Frequency ratio, f_{in}/f_0

Frequency ratio, f_{in}/f_0
Phase maps and spectra the driven RTD-LD
Steganography – camouflage for signals – just add chaos.

• At source chaos generator is modulated but chaos > modulation so signal looks like noise

• Deterministic chaos can be removed by receiver and signal recovered
Summary and Conclusion

- Introduction to the RTD the fastest electronic device
- The RTD-LD can be monolithically integrated
- The hybrid RTD-LD has allowed as to verify the Lienard’s oscillator model
- Modulation of the phase of the radio frequency sub-carrier was demonstrated in the laser output.
- First demonstration of wireless to optical conversion and optical to wireless with the RTD-PD - using synchronization of a nonlinear oscillator.
- Chaos generation

http://userweb.elec.gla.ac.uk/i/ironside/RTD/RTDOpto.html