Higher central extensions and cohomology

Diana Rodelo and Tim Van der Linden

Centre for Mathematics of the University of Coimbra
University of Algarve, Portugal

CT2011, Vancouver, 17–23 July 2011
Always in this talk: Z an object, A an abelian object

\[
\begin{align*}
\text{degree 1} & \quad H^2(Z, A) \cong \text{Centr}^1(Z, A) \\
& \quad \text{classical for groups: } 0 \rightarrow A \xrightarrow{\cdot f} X \xrightarrow{f} Z \rightarrow 0 \quad f \text{ central extension: regular epimorphism with } [A, X] = 0 \\
& \quad \text{semi-abelian monadic case: } [\text{Gran–VdL, 2008}] \\
\text{degree 2} & \quad H^3(Z, A) \cong \text{Centr}^2(Z, A) \\
& \quad [\text{Rodelo–VdL, 2010}] \text{ based on } [\text{Everaert–Gran–VdL, 2008}] \text{ and G. Janelidze’s work on categorical Galois theory} \\
& \quad \text{left: cohomology “without projectives” of } [\text{Bourn 1999, 2002}] \text{ and } [\text{Bourn–Rodelo, 2007}], \text{ notion of direction} \\
& \quad \text{right: classes of double central extensions of } Z \text{ by } A
\end{align*}
\]
Cohomology and central extensions

Always in this talk: Z an object, A an abelian object

<table>
<thead>
<tr>
<th>Degree 1</th>
<th>$H^2(Z, A) \cong \text{Centr}^1(Z, A)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ classical for groups: $0 \rightarrow A \xrightarrow{f} X \xrightarrow{f} Z \rightarrow 0$</td>
<td></td>
</tr>
<tr>
<td>✓ f central extension: regular epimorphism with $[A, X] = 0$</td>
<td></td>
</tr>
<tr>
<td>✓ semi-abelian monadic case: [Gran–VdL, 2008]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Degree 2</th>
<th>$H^3(Z, A) \cong \text{Centr}^2(Z, A)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ right: classes of double central extensions of Z by A</td>
<td></td>
</tr>
</tbody>
</table>
Cohomology and central extensions

Always in this talk: \(Z \) an object, \(A \) an abelian object

degree 1 \(H^2(Z, A) \cong \text{Centr}^1(Z, A) \)

- classical for groups: \(0 \to A \to X \stackrel{f}{\to} Z \to 0 \)
 \(f \) central extension: regular epimorphism with \([A, X] = 0 \)
- semi-abelian monadic case: [Gran–VdL, 2008]

degree 2 \(H^3(Z, A) \cong \text{Centr}^2(Z, A) \)

- right: classes of double central extensions of \(Z \) by \(A \)
Cohomology and central extensions

degrees $n \geq 2$ \quad $H^{n+1}(Z, A) \cong \text{Centr}^n(Z, A)$

- the subject of this talk, recent work of Rodelo–VdL
 - first algebraic proof for groups, now general proof which is geometric
 - left: cohomology as classes of higher torsors [Duskin 1975, 1979] and [Glenn, 1982]
 in the monadic case, Barr–Beck comonadic cohomology
- right: classes of higher central extensions
- framework: semi-abelian categories + (CC)
Cohomology and central extensions

\[H^{n+1}(Z, A) \cong \text{Centr}^n(Z, A) \]

- degrees \(n \geq 2 \)
- the subject of this talk, recent work of Rodelo–VdL
- first *algebraic* proof for groups, now general proof which is *geometric*
- left: cohomology as classes of higher torsors [Duskin 1975, 1979] and [Glenn, 1982]
- in the monadic case, Barr–Beck comonadic cohomology
- right: classes of higher central extensions
- framework: semi-abelian categories + (CC)
Cohomology and central extensions

\[H^{n+1}(Z, A) \cong \text{Centr}^n(Z, A) \]

- the subject of this talk, recent work of Rodelo–VdL
- first *algebraic* proof for groups, now general proof which is *geometric*
- left: cohomology as classes of higher torsors [Duskin 1975, 1979] and [Glenn, 1982] in the monadic case, Barr–Beck comonadic cohomology
- right: classes of higher central extensions
- framework: semi-abelian categories + (CC)
Cohomology and central extensions

\[H^{n+1}(Z, A) \cong \text{Centr}^n(Z, A) \]

- the subject of this talk, recent work of Rodelo–VdL
- first *algebraic* proof for groups, now general proof which is *geometric*
- left: cohomology as classes of higher torsors [Duskin 1975, 1979] and [Glenn, 1982] in the monadic case, Barr–Beck comonadic cohomology
- right: classes of higher central extensions
- framework: semi-abelian categories + (CC)
Higher central extensions

\(\mathcal{A} \) semi-abelian category; \(0 = \emptyset \) and \(n + 1 = \{0, \ldots, n\} \)

Cubes and extensions

- an \textbf{n-cube} in \(\mathcal{A} \) is a functor \(F: (2^n)^{\text{op}} \to \mathcal{A} \)
- an \textbf{n-cube} \(F \) is an \textbf{n-extension} iff for all \(\emptyset \neq I \subseteq n \)
 \(F_I \to \lim_{J \subseteq I} F_J \) is regular epi

Inductive definition (Galois theory, after [Janelidze–Kelly, 1994])

- \(\text{Ab}\mathcal{A} \subset \mathcal{A} \) full reflective subcategory
- \(\text{CExt}^1\mathcal{A} \subset \text{Ext}^1\mathcal{A} \): central w.r.t. \(\text{Ab}\mathcal{A} \)
- \(\text{CExt}^2\mathcal{A} \subset \text{Ext}^2\mathcal{A} \): central w.r.t. \(\text{CExt}^1\mathcal{A} \)
- \(\text{CExt}^{n+1}\mathcal{A} \subset \text{Ext}^{n+1}\mathcal{A} \): central w.r.t. \(\text{CExt}^n\mathcal{A} \)

Gives adjunctions \(\text{CExt}^n\mathcal{A} \overset{\subset}{\underset{I_n}{\leftarrow}} \text{Ext}^n\mathcal{A} \)
The direction of a three-fold (central) extension
Higher central extensions

Take an object Z of \mathcal{A} and $n \geq 1$. For any n-presentation F of Z,

$$H_{n+1}(Z, \text{Ab}\mathcal{A}) \cong \frac{\langle F_n \rangle \cap \bigcap_{i \in n} K[f_i]}{L_n[F]}$$

- F_n initial object of the cube, the f_i the initial arrows
- exact sequence $0 \to \langle X \rangle \xrightarrow{} X \xrightarrow{\eta_X} \text{ab}X \xrightarrow{} 0$ for any X so $\langle X \rangle = [X, X]$, the Huq commutator
- an n-extension F is central iff $L_n[F] = 0$
- $\bigcap_{i \in n} K[f_i] = K^n[F] = D_{(n,Z)}F$ is the direction of F,

$$D_{(n,Z)}: \text{CExt}^n_{Z,\mathcal{A}} \to \text{Ab}\mathcal{A}: F \mapsto D_{(n,Z)}F = \bigcap_{i \in n} K[f_i]$$

- $H_{n+1}(Z, \text{Ab}\mathcal{A}) \cong \lim D_{(n,Z)}$ by [Goedecke–VdL, 2009]
Higher central extensions

Take an object Z of \mathcal{A} and $n \geq 1$. For any n-presentation F of Z, n-extension F is central iff $L_n[F] = 0$

\[
H_{n+1}(Z, \text{Ab}\mathcal{A}) \cong \frac{\langle F_n \rangle \cap \bigcap_{i \in \mathbb{N}} K[f_i]}{L_n[F]}
\]

- F_n initial object of the cube, the f_i the initial arrows
- exact sequence $0 \rightarrow \langle X \rangle \rightarrow X \xrightarrow{\eta_X} \text{ab}X \rightarrow 0$ for any X so $\langle X \rangle = [X, X]$, the Huq commutator
- an n-extension F is central iff $L_n[F] = 0$
- $\bigcap_{i \in \mathbb{N}} K[f_i] = K^n[F] = D_{(n,Z)}F$ is the direction of F,

\[
D_{(n,Z)} : C\text{Ext}_{Z}^{n}\mathcal{A} \rightarrow \text{Ab}\mathcal{A} : F \mapsto D_{(n,Z)}F = \bigcap_{i \in \mathbb{N}} K[f_i]
\]

- $H_{n+1}(Z, \text{Ab}\mathcal{A}) \cong \lim D_{(n,Z)}$ by [Goedecke–VdL, 2009]
Higher central extensions

Take an object Z of \mathcal{A} and $n \geq 1$. For any n-presentation F of Z,

$$H_{n+1}(Z, \text{AbA}) \cong \frac{\langle F_n \rangle \cap \bigcap_{i \in n} K[f_i]}{L_n[F]}$$

- F_n initial object of the cube, the f_i the initial arrows
- exact sequence $0 \rightarrow \langle X \rangle \rightarrow X \xrightarrow{\eta_X} \text{ab}X \rightarrow 0$ for any X so $\langle X \rangle = [X, X]$, the Huq commutator
- an n-extension F is central iff $L_n[F] = 0$
- $\bigcap_{i \in n} K[f_i] = K^n[F] = D_{(n,Z)}F$ is the direction of F,

$$D_{(n,Z)} : \text{CExt}^n_{\mathcal{A}} \rightarrow \text{AbA} : F \mapsto D_{(n,Z)}F = \bigcap_{i \in n} K[f_i]$$

- $H_{n+1}(Z, \text{AbA}) \cong \text{lim } D_{(n,Z)}$ by [Goedecke–VdL, 2009]
The commutator condition (CC)

Definition

A semi-abelian category satisfies the **commutator condition (CC)** when for all \(n \geq 1 \), an \(n \)-fold extension \(F \) is central iff

\[
\left[\bigcap_{i \in I} K[f_i], \bigcap_{i \in n \setminus I} K[f_i] \right] = 0
\]

for all \(I \subseteq n \). (Hence \(L_n[F] = \bigcup_{I \subseteq n} \left[\bigcap_{i \in I} K[f_i], \bigcap_{i \in n \setminus I} K[f_i] \right] \).)

- In degree 1, all semi-abelian categories satisfy (CC)
- in degree 2, (CC) is weaker than (SH) “Smith = Huq” by [Rodelo–VdL, 2010]
- so far, in degrees \(n \geq 3 \), we only have examples: groups, non-unitary rings, Lie algebras, etc., besides all semi-abelian arithmetical and all abelian categories
- Is (CC) a higher-dimensional version of (SH)?
Main theorem, consequences

Theorem

In a semi-abelian category with (CC), let Z be an object and A an abelian object. Consider $n \geq 1$. Then

$$H^{n+1}(Z, A) \cong \text{Centr}^n(Z, A) = \pi_0(D_{(n,Z)}^{-1}A)$$

where $H^{n+1}(Z, A)$ is Duskin–Glenn cohomology, and Barr–Beck comonadic cohomology in the monadic case; $\text{Centr}^n(Z, A)$ contains equivalence classes of **central extensions of** Z by A.

- Long exact sequence for $\text{Centr}^n(Z, -)$
- Duality in the *interpretations* of homology and cohomology:

$$H_{n+1}(Z, \text{Ab}\mathcal{A}) \cong \lim D_{(n,Z)}^{-1} \quad H^{n+1}(Z, A) \cong \pi_0(D_{(n,Z)}^{-1}A)$$

where $D_{(n,Z)} : \text{CExt}_Z^n\mathcal{A} \to \text{Ab}\mathcal{A} : F \mapsto D_{(n,Z)}F = \bigcap_{i \in n} K[f_i]$
Main theorem, consequences

Theorem

In a semi-abelian category with (CC), let Z be an object and A an abelian object. Consider $n \geq 1$. Then

\[H^{n+1}(Z, A) \cong \text{Centr}^n(Z, A) = \pi_0(D_{(n,Z)}^{-1}A) \]

where $H^{n+1}(Z, A)$ is Duskin–Glenn cohomology, and Barr–Beck comonadic cohomology in the monadic case; $\text{Centr}^n(Z, A)$ contains equivalence classes of central extensions of Z by A.

- Long exact sequence for $\text{Centr}^n(Z, -)$
- Duality in the interpretations of homology and cohomology:

\[H_{n+1}(Z, \text{Ab}\mathcal{A}) \cong \lim D_{(n,Z)} \quad H^{n+1}(Z, A) \cong \pi_0(D_{(n,Z)}^{-1}A) \]

where $D_{(n,Z)} : \text{CExt}^n_Z \mathcal{A} \rightarrow \text{Ab}\mathcal{A} : F \mapsto D_{(n,Z)}F = \bigcap_{i \in \mathbb{N}} K[f_i]$.
The direction of a three-fold (central) extension
Duskin and Glenn’s torsors:
A “simplicial” version of higher central extensions

\[
\begin{array}{ccc}
\text{torsor} & = & \text{truncated simplicial resolution} \\
\text{central extension} & = & \text{extension} \\
& = & \text{pregroupoid}
\end{array}
\]

- Groupoid
 - \(G_1 \)
 - \(G_0 \)
 - Multiplication, identities
 - Only one object of objects

- Pregroupoid
 - \(G_1 \)
 - \(G_0 \)
 - \(G_0' \)
 - Mal’tsev operation
 - Two objects of objects

\[
m(\alpha, \beta) = \gamma
\]

\[
p(\alpha, \beta, \gamma) = \delta
\]
Duskin and Glenn’s torsors:
A “simplicial” version of higher central extensions

torsor
central extension
= truncated simplicial resolution
extension
= groupoid
pregroupoid

groupoid

\[
\begin{array}{c}
G_1 \\
\sigma_0 \quad \sigma_1 \\
G_0
\end{array}
\]

multiplication, identities

only one object of objects

\[
\alpha \quad \beta \\
\gamma
\]

\[m(\alpha, \beta) = \gamma\]

pregroupoid

Mal’tsev operation
two objects of objects

\[
\begin{array}{c}
G_1 \\
\sigma_0 \quad \sigma_1 \\
G_0 \quad G_0'
\end{array}
\]

\[p(\alpha, \beta, \gamma) = \delta\]
Duskin and Glenn’s torsors: Definition

- Let Z be an object, A an abelian object
- $\mathcal{K}(Z, A, n)$ is the augmented simplicial object

\[
\begin{array}{cccccc}
& & n+1 & n & n-1 & n-2 \\
A^{n+1} \times Z & \overset{\partial_{n+1} \times 1_Z}{\rightarrow} & A \times Z & \overset{\text{pr}_Z}{\rightarrow} & Z & \cdots \\
& \overset{\text{pr}_n \times 1_Z}{\rightarrow} & & \overset{\text{pr}_Z}{\rightarrow} & & \\
& \overset{\text{pr}_0 \times 1_Z}{\rightarrow} & & & & \\
\end{array}
\]

where $\partial_{n+1} = (-1)^n \sum_{i=0}^n (-1)^i \text{pr}_i$

- an n-torsor of Z by A is an augmented simplicial object \mathcal{T} together with a morphism $\xi: \mathcal{T} \rightarrow \mathcal{K}(Z, A, n)$ such that
 - $(T1)$ ξ is a fibration, exact from degree n on;
 - $(T2)$ $\mathcal{T} \cong \text{Cosk}_{n-1} \mathcal{T}$;
 - $(T3)$ \mathcal{T} is a simplicial resolution

- $(T1)$ means $\Delta(\mathcal{T}, n) \cong A \times \wedge^i(\mathcal{T}, n)$ for all i; in particular $A \cong \bigcap_{i \in n} K[\partial_i]$
Duskin and Glenn’s torsors: Definition

- Let Z be an object, A an abelian object
- $\mathcal{K}(Z, A, n)$ is the augmented simplicial object

\[
\begin{array}{cccccc}
A^{n+1} \times Z & \xrightarrow{\partial_{n+1} \times 1_Z} & A \times Z & \xrightarrow{\text{pr}_Z} & Z \\
\downarrow{\text{pr}_n \times 1_Z} & & \downarrow{\text{pr}_Z} & & \\
\downarrow{\text{pr}_0 \times 1_Z} & & & & \\
\end{array}
\]

where $\partial_{n+1} = (-1)^n \sum_{i=0}^{n} (-1)^i \text{pr}_i$

- an n-torsor of Z by A is an augmented simplicial object \mathcal{T} together with a morphism $\mathcal{U}: \mathcal{T} \to \mathcal{K}(Z, A, n)$ such that
 - (T1) \mathcal{U} is a fibration, exact from degree n on;
 - (T2) $\mathcal{T} \cong \text{Cosk}_{n-1} \mathcal{T}$;
 - (T3) \mathcal{T} is a simplicial resolution

- (T1) means $\triangle(\mathcal{T}, n) \cong A \times \wedge^i(\mathcal{T}, n)$ for all i; in particular $A \cong \bigcap_{i \in n} K[\partial_i]$
Duskin and Glenn’s torsors: Definition

- Let Z be an object, A an abelian object
- $\mathbb{K}(Z, A, n)$ is the augmented simplicial object

\[
\begin{array}{cccc}
 n + 1 & n & n - 1 & n - 2 \\
\end{array}
\]

\[
\begin{array}{ccc}
 A^{n+1} \times Z & \xrightarrow{\partial_{n+1} \times 1_Z} & A \times Z \\
 \quad \downarrow{\text{pr}_n \times 1_Z} & & \quad \downarrow{\text{pr}_Z} \\
 \quad \downarrow{\text{pr}_0 \times 1_Z} & & \quad \downarrow{\text{pr}_Z} \\
 & A \times Z & \xrightarrow{\partial_i} & Z \\
 & \quad \downarrow{\text{pr}_Z} & & \quad \downarrow{\text{pr}_Z} \\
 & \quad \downarrow{\text{pr}_0 \times 1_Z} & & \quad \downarrow{\text{pr}_Z} \\
 & \quad \downarrow{\text{pr}_n \times 1_Z} & & \quad \downarrow{\text{pr}_Z} \\
\end{array}
\]

where $\partial_{n+1} = (-1)^n \sum_{i=0}^{n} (-1)^i \text{pr}_i$

- an n-torsor of Z by A is an augmented simplicial object \mathbb{T} together with a morphism $\mathbb{T} \to \mathbb{K}(Z, A, n)$ such that
- (T1) \mathbb{T} is a fibration, exact from degree n on;
- (T2) $\mathbb{T} \cong \text{Cosk}_{n-1} \mathbb{T}$;
- (T3) \mathbb{T} is a simplicial resolution

- (T1) means $\triangle(\mathbb{T}, n) \cong A \times \wedge^i(\mathbb{T}, n)$ for all i;
 in particular $A \cong \bigcap_{i \in n} K[\partial_i]$
Duskin and Glenn’s torsors: Fundamental results

Definition/Theorem (Duskin–Glenn)

\[H^{n+1}(Z, A) \cong \pi_0 Tors^n(Z, A) \] where \(Tors^n(Z, A) \) is considered as a full subcategory of \(S^+A/\mathbb{K}(Z, A, n) \)

Theorem

A simplicial object is an \(n \)-torsor iff its \((n - 1)\)-truncation is an \(n \)-fold central extension

\[\Rightarrow \] depends on (CC), algebraic proof

\[\Leftarrow \] always true, uses *geometry of higher central extensions*

Proposition

Every central extension is connected with a central truncated simplicial resolution: every class of \(D_{(n, Z)}^{-1}A \) contains a torsor of \(Z \) by \(A \)
Duskin and Glenn’s torsors:

Fundamental results

Definition/Theorem (Duskin–Glenn)

\[H^{n+1}(Z, A) \cong \pi_0 \text{Tors}^n(Z, A) \text{ where } \text{Tors}^n(Z, A) \text{ is considered as a full subcategory of } S^+A/\mathcal{K}(Z, A, n) \]

Theorem

A simplicial object is an \(n \)-torsor iff its \((n - 1) \)-truncation is an \(n \)-fold central extension

\[\Rightarrow \text{ depends on (CC), algebraic proof} \]

\[\Leftarrow \text{ always true, uses geometry of higher central extensions} \]

Proposition

Every central extension is connected with a central truncated simplicial resolution: every class of \(\text{D}_{(n,Z)}^-A \) contains a torsor of \(Z \) by \(A \)
Duskin and Glenn’s torsors: Fundamental results

Definition/Theorem (Duskin–Glenn)

\[H^{n+1}(Z, A) \cong \pi_0 \text{Tors}^n(Z, A) \]
where \(\text{Tors}^n(Z, A) \) is considered as a full subcategory of \(S^+A/\mathbb{K}(Z, A, n) \)

Theorem

A simplicial object is an \(n \)-torsor iff its \((n-1) \)-truncation is an \(n \)-fold central extension

\[\Rightarrow \] depends on (CC), algebraic proof

\[\Leftarrow \] always true, uses *geometry of higher central extensions*

Proposition

Every central extension is connected with a central truncated simplicial resolution: every class of \(D_{(n, Z)}^{-1}A \) contains a torsor of \(Z \) by \(A \)
The geometry of higher central extensions in degree 2: box operation, diamonds

\[
\begin{align*}
X \xrightarrow{c} C \\
F \downarrow \\
D \xrightarrow{d} Z
\end{align*}
\]

is central iff \(R[d] \Box R[c] \cong A \times (R[d] \times \chi R[c]) \)

\(R[d] \Box R[c] \) contains diamonds

\(R[d] \times \chi R[c] \) diamonds with one arrow missing

notation \(R[d] \times \chi R[c] = R[d] \Box^0 R[c] \)
Higher-order box operation: \(\Box_i R[f_i] \) in degree 3
The elements of $\square_i R[f_i]$ in degree 3

- in degree 3, the diamonds are octahedra, represented by matrices of order $2 \times 2 \times 2 = 2^3$ via geometric duality:

- in $\square_i^3 R[f_i]$ the triangle b is missing, since $3 = \{0, 1, 2\}$
- if F is central, this triangle is (uniquely) determined by an element of the direction A, as $\square_i R[f_i] \cong A \times \square_i^3 R[f_i]$
- any cycle may be embedded into a diamond
The elements of $\square_i R[f_i]$ in degree 3

- in degree 3, the diamonds are octahedra, represented by matrices of order $2 \times 2 \times 2 = 2^3$ via geometric duality:

- in $\bullet^3_i R[f_i]$ the triangle b is missing, since $3 = \{0, 1, 2\}$
- if F is central, this triangle is (uniquely) determined by an element of the direction A, as $\square_i R[f_i] \cong A \times \bullet^3_i R[f_i]$
- any cycle may be embedded into a diamond
The elements of $\bigotimes_i R[f_i]$ in degree 3

- in degree 3, the diamonds are octahedra, represented by matrices of order $2 \times 2 \times 2 = 2^3$ via geometric duality:

- in $\bigotimes_i^3 R[f_i]$ the triangle b is missing, since $3 = \{0, 1, 2\}$
- if F is central, this triangle is (uniquely) determined by an element of the direction A, as $\bigotimes_i R[f_i] \cong A \times \bigotimes_i^3 R[f_i]$
- any cycle may be embedded into a diamond
In a semi-abelian category \(\mathcal{A} \) which satisfies (CC)

Correspondence between torsors and central extensions

\[
H^{n+1}(Z, A) \cong \pi_0 \text{Tors}^n(Z, A) \cong \text{Centr}^n(Z, A)
\]

Duality between homology and cohomology

\[
D_{(n, Z)} : \text{CExt}^n_{\mathbb{Z}} \mathcal{A} \to \text{Ab} \mathcal{A} : F \mapsto D_{(n, Z)} F = \bigcap_{i \in n} K[f_i]
\]

\[
H_{n+1}(Z, \text{Ab} \mathcal{A}) \cong \lim D_{(n, Z)} \quad H^{n+1}(Z, A) \cong \pi_0(D^{-1}_{(n, Z)} A)
\]

To do

Extend to non-trivial coefficients
Characterise the commutator condition in elementary terms