ENCyclopedia of Ecology - CONTRIBUTORS’ INSTRUCTIONS

PROOFREADING

The text content for your contribution is in final form when you receive proofs. Please read proofs for accuracy and clarity, as well as for typographical errors, but please DO NOT REWRITE.

At the beginning of your article there is a page containing any author queries, keywords, and the authors’ full address details.

Please address author queries as necessary. While it is appreciated that some articles will require updating/revising, please try to keep any alterations to a minimum. Excessive alterations may be charged to the contributors.

The shorter version of the address at the beginning of the article will appear under your author/co-author name(s) in the published work and also in a List of Contributors. The longer version shows full contact details and will be used to keep our internal records up-to-date (they will not appear in the published work). For the lead author, this is the address that the honorarium and any offprints will be sent to. Please check that these addresses are correct.

Titles and headings should be checked carefully for spelling and capitalization. Please be sure that the correct typeface and size have been used to indicate the proper level of heading. Review numbered items for proper order – e.g., tables, figures, footnotes, and lists. Proofread the captions and credit lines of illustrations and tables. Ensure that any material requiring permissions has the required credit line, and that the corresponding documentation has been sent to Elsevier.

Note that these proofs may not resemble the image quality of the final printed version of the work, and are for content checking only. Artwork will have been redrawn/relabelled as necessary, and is represented at the final size.

PLEASE KEEP A COPY OF ANY CORRECTIONS YOU MAKE.

DISPATCH OF CORRECTIONS

Proof corrections should be returned in one communication to your academic editor Dr Jan Vymazal by 20-02-2008 using one of the following methods:

1. If corrections are minor they should be listed in an e-mail to vymazal@yahoo.com. A copy should also be sent to: MRW-CLGY@elsevier.com. The e-mail should state the article code number in the subject line. Corrections should be consecutively numbered and should state the paragraph number, line number within that paragraph, and the correction.

2. If corrections are substantial, send the amended hardcopy by courier to Dr Jan Vymazal, ENKI, o.p.s., Ricanova 40, 169 00 Praha 6, Czech Republic, Phone: +420 233 350 180, with a copy by fax to the Elsevier MRW Production Department (fax number: +44 (0)1865 843974). If it is not possible to courier your corrections, fax the relevant marked pages to the Elsevier MRW Production Department with a covering note clearly stating the article code number and title.

Note that a delay in the return of proofs could mean a delay in publication. Should we not receive your corrected proofs within 7 days, Elsevier may have to proceed without your corrections.

CHECKLIST

- Author queries addressed/answered?
- Affiliations, names and addresses checked and verified?
- ‘Further Reading’ section checked and completed?
- Permissions details checked and completed?
- Outstanding permissions letters attached/enclosed?
- Figures and tables checked?

If you have any questions regarding these proofs please contact the Elsevier MRW Production Department at: MRW-CLGY@elsevier.com.
PROOFREADING

Please find attached PDF proofs for 00046. A copy of these proofs has been sent to the lead author, along with any manuscript queries. We have asked them to send their corrections to you by 20-02-2008.

Note that these proofs may not resemble the image quality of the final printed version of the work, and are for content checking only. Artwork will have been redrawn/relabelled as necessary, and is represented at the final size.

Proof corrections from contributors will reach you in one of the following ways:

1. If corrections are minor they will be e-mailed to you by the contributor. This e-mail will state the article code number. Upon receiving this e-mail please amend/approve contributor corrections (if necessary) and add your corrections (if any) to the e-mail and forward it to the Elsevier MRW Production Department at: MRW-CLGY@elsevier.com.

2. If corrections are more substantial, the amended hardcopy will be sent directly to you by courier (or from the contributor to Elsevier by fax and then forwarded to you as an e-mail). Please add your corrections to a hardcopy and fax any amended pages to the Elsevier MRW Production Department on +44 (0)1865 843974, with a cover note stating the article code number and title.

PLEASE KEEP A COPY OF ANY CORRECTIONS.

Please note the following points:

Title
Check that article titles are appropriate, and inform us of any proposed changes.

Spelling
If you notice any spelling errors, please point them out to us. You should have a copy of the current world and abbreviation lists.

Cross-references
Please ensure that all cross-references to other articles are in place - if there are none present, please insert as necessary. ‘See’ references should appear within the main article text and will link directly with relevant articles. ‘See also’ references will appear at the end of each article, and will link to useful related (but not necessarily directly related) articles. PLEASE USE MANUSCRIPT CODE NUMBERS RATHER THAN INDIVIDUAL TITLES. Along with the first batch of proofs, you will receive an up-to-date article list showing article titles and code numbers.

Further Reading
Check all titles are present, and listed in the correct format. This section should not exceed 15 titles.

Look through the proofs and add your comments. Once you have received and approved the contributors’ corrections, collate them with yours. Please try to keep any alterations to a minimum.

DISPATCH OF CORRECTIONS

Please send corrections for these proofs to the Elsevier MRW Production Department by 29-02-2008 at the latest. You should forward your comments to us within this time even if the relevant contributors have not sent their corrections to you.

PLEASE KEEP A RECORD OF WHICH ARTICLES YOU HAVE RECEIVED AND WHEN, IN ADDITION TO THE DATE YOU RETURNED COLLATED PROOFS TO US.

If you have any questions regarding these proofs please contact the Elsevier MRW Production Department at: MRW-CLGY@elsevier.com.
Author Query Form

Encyclopedia of Ecology

Article: 00046

Dear Author,

Please respond to the queries listed below. You may write your comments on this page, but please write clearly as illegible mark-ups may delay publication. If returning the proof by fax do not write too close to the paper's edge.

Please note that these queries have been raised by Elsevier's appointed copy-editors, and not by your academic editor.

Thank you for your assistance.

AUTHOR QUERIES

AU1 Please check the long affiliations for accuracy. These are for Elsevier's records and will not appear in the printed work.
Author's Contact Information

E Wolanski
Australian Institute of Marine Science
PMB No 3
Townsville
QLD 4810
Australia

A Newton
Faculdade de Ciencias do Mar e do Ambiente
Universidade do Algarve
Faro 8000-117
Portugal

N Rabalais
Louisiana Universities Marine Consortium
8124 Hwy. 56
Chauvin
LA 70344
USA

C Legrand
Aquatic Ecology, Department. of Biology and Environmental Science
University of Kalmar
S-39182 Kalmar
Sweden

Keywords: Anoxia; Coral reef; Ecosystem manipulation; Ecosystem model; Eutrophication; Fisheries; Food web; Harmful algae blooms; Hypoxia; Physics–biology links

Abstract
This article presents a scientific overview of the processes and the impact of environmental degradation of coastal waters due to human activities on the adjoining land. The direct effects range from eutrophication, harmful algae blooms, to hypoxia and anoxia. The indirect effects are more subtle and can also lead to the collapse of the ecosystem; such is the case of coral reefs. Engineering solutions alone are not available to prevent this degradation that can only be reversed, or prevented, using a basin-wide ecohydrology approach.
The Degradation of Coastal Waters

As highlighted in 00044, throughout the world estuaries have experienced environmental degradation and present proposed remedial measures based on engineering and technological fix have been unable to restore the ecological processes of a healthy, robust estuary, and, as such, will not reinstate the full beneficial functions of the estuary ecosystem.

This story of degradation is repeated worldwide also for coast zones. The problem is more insidious, and harder to address, because historically coast zones were seen as having essentially infinite capacity to dilute waste from human activities and because the fisheries resources were essentially free for all. Yet, just like estuaries, coastal waters are also suffering from increasing eutrophication, increasing turbidity, harmful algae blooms, fisheries collapse, and an increasing loss of biodiversity. At the same time these waters are increasingly polluted and impacted by hydrocarbons from low-level, chronic oil spills as well as occasional and often catastrophic oil spills. Some of these coastal waters are also showing signs of impacts by climate change.

All these effects have negative socioeconomic impacts through the loss of income and employment for coastal communities. They suggest that if these issues are not addressed, coastal waters will increasingly be degraded and ultimately may suffer the fate of many estuaries worldwide that have become essentially little more than drains for wastes and channels for navigation (see 00044). This scenario runs contrary to the wishes of the human population that, with increasing wealth, demands a high quality of life.

Ecological Engineering for Eutrophication Management in Coastal Zones

Upwelling zones, which receive infusions of nutrients from deep ocean waters, support some of the most productive marine ecosystems. However, anthropogenic eutrophication of estuaries and coastal zones has been a growing problem since the latter half of the twentieth century. The main drivers for this have been the increasing proportion of the population moving to the coastal zones, an increase in the burning of fossil fuels, the increase in the use of synthetic fertilizers and the increase in consumption of animal protein, particularly from encouraging the intensive rearing of poultry and pork. Other contributing factors have been the draining of wetlands and the clearing of riparian vegetation. The result of these human activities has been a very large increase of the inputs of certain plant nutrients, particularly nitrogen and phosphorus, into aquatic ecosystems. Whereas phosphorus is often the limiting nutrient in freshwater systems, nitrogen is most often the naturally limiting nutrient in estuarine and coastal systems. Within the estuarine to coastal continuum, multiple nutrient limitations occur among nitrogen, phosphorus, and silicon along the salinity gradient and by season.

Rivers play a crucial role in the delivery of nutrients that supports food webs. There are thresholds; however, where the load of nutrients to estuarine, coastal, 1 and marine systems exceeds the capacity for assimilation of nutrient-enhanced production, and water-quality degradation occurs. An imbalance of these nutrients in combination with silica leads to shifts in phytoplankton community composition. Impacts can include noxious and toxic algal blooms, increased turbidity with a subsequent loss of submerged aquatic vegetation, oxygen deficiency, disruption of ecosystem functioning, loss of habitat, loss of biodiversity, shifts in food webs, and loss of harvestable fisheries.

Rivers play a crucial role in the delivery of nutrients to the ocean. In the subbasins to the North Atlantic Ocean, specifically in the Baltic catchments, and in the watershed of the Mississippi River, inputs of anthropogenic nitrogen via rivers far exceed other sources of
The susceptibility of estuaries and coastal waters to eutrophication is largely controlled by the physics of these systems such as the geomorphology, the tidal range, the residence time and flushing rates, and the engineering of river mouths or inlets. Partially enclosed systems with restricted exchange, for example, lagoons, fjords and large estuaries, such as the Chesapeake Bay, are particularly vulnerable. This is also the case for inland seas, such as the Baltic, the Black Sea, and the Adriatic. Some of the symptoms of eutrophication in estuaries may be partially alleviated by ecological engineering measures such as building of treatment ponds, dredging, creating man-made mouths, and wetland restoration and creation.

Several indices are under development or being tested for the evaluation of eutrophication by ecological engineers. They are important management tools and, combined with scenarios of different future outlooks, maybe used as future prediction tools. A widely used screening model is the USA National Estuarine Eutrophication Assessment that has been updated into the ASSETS model. It has been applied in most of the USA estuaries, several European and Chinese systems. Another screening model in widespread use in Europe is the OSPAR Comprehensive Procedure.

Some options for the effective control of point sources of nutrients are available to ecological engineers. These include the construction of urban wastewater treatment plants or the upgrading of existing plants to tertiary treatment. However, the outlook is much bleaker for the control of diffuse sources such as agricultural runoff and atmospheric deposition. The harmonization of presently conflicting policies such as agricultural subsidies (that encourage the excessive use of fertilizers) and environmental policies such as the Clean Water Act (USA) and the Water Framework Directive (EU) may in future help resolve some of these issues. Certainly, changes in the socioeconomic situation of countries and regions can have an effect on eutrophication. The collapse of collective farming practices after the breakup of the Soviet Union was one example of how a change in agriculture can relieve the pressures on coastal ecosystems, in this case the Black Sea. However, changes in life styles in European countries as a result of adhesion to the European Union have resulted in this case for the Baltic and Black Seas.

Hypoxia and Anoxia

A common manifestation of eutrophication is hypoxia (dissolved oxygen concentration $DO < 2 \text{ mg l}^{-1}$) and anoxia ($DO = 0$), that is, the depletion of dissolved oxygen in coastal waters, leading to 'dead zones'. When the DO is less than a critical value (typically 2 mg l^{-1}), mobile animals such as demersal fish, crabs, and shrimp migrate away from the area. Resident animals die when the DO $< 1 \text{ mg l}^{-1}$. Fisheries have collapsed, notably in the Baltic and Black Seas.

Hypoxia occurs naturally in many parts of the world’s marine environments, such as fjords, deep basins, open ocean oxygen minimum zones, and oxygen minimum zones associated with upwelling systems. Hypoxic and anoxic waters have existed throughout geologic time, but their occurrence in shallow coastal and estuarine areas is increasing. The severity of hypoxia (either duration, intensity, or size) has increased where hypoxia occurred historically, and hypoxia exists now when it did not occur before. The severity of hypoxia increased in the northern Gulf of Mexico, primarily since the 1960s. Evidence comes from paleo-indicators in accumulated sediments, long-term hydrographic data, and scenarios based on empirical models. The size and frequency of hypoxia in the Gulf of Mexico have increased as the flux of nitrate increased, and there is a direct correlation between nitrate flux to the Gulf of Mexico from the Mississippi River and the mid-summer size of the hypoxic zone.
Aerobic bacteria consume oxygen during decomposition of the excess carbon that sinks from the upper water column to the seabed. There will be a net loss of oxygen in the lower water column, if the consumption rate is faster than the diffusion of oxygen from surface waters to bottom waters. Hypoxia is more likely when stratification of the water column occurs and will persist as long as oxygen consumption rates exceed those of resupply.

Some of the largest hypoxic zones are in the coastal areas of the Baltic Sea, the northern Gulf of Mexico, and the northwestern shelf of the Black Sea (reaching 84,000 km², 22,000 km², and 40,000 km², respectively). Hypoxia existed on the northwestern Black Sea shelf historically, but anoxic events became more frequent and widespread in the 1970s and 1980s reaching over areas of the seafloor up to 40,000 km² in depths of 8–40 m. Recent reductions in nutrient loads to the northwestern Black Sea resulted in a minimization of the hypoxic zone there. There is also evidence that the suboxic zone of the open Black Sea enlarged toward the surface by about 10 m since 1970. Similar declines in bottom-water-dissolved oxygen have occurred elsewhere as a result of increasing nutrient loads and anthropogenic eutrophication, for example, the northern Adriatic Sea, the Kattegat and Skagerrak, Chesapeake Bay, the German Bight and the North Sea, Long Island Sound, and New York. The number of estuaries with hypoxia or anoxia continues to rise.

The obvious effects of hypoxia/anoxia include the displacement of pelagic organisms and selective loss of demersal and benthic organisms. These impacts may be aperiodic if recovery occurs, may occur on a seasonal basis with differing rates of recovery, or may be permanent so that there is a long-term shift in ecosystem structure and function. As the oxygen concentration falls from saturated or optimal levels toward depletion, a variety of behavioral and physiological impairments affect the animals that reside in the water column or in the sediments or attached to hard substrates. Hypoxia also affects optimal growth rates and reproductive capacity. Mobile animals, such as shrimp, fish, and some crabs, flee waters where the oxygen concentration falls below 3–2 mg l⁻¹. Movements of animals onshore can result in ‘jubilees’ where stunned fish and shrimp are easily captured, or result in massive fish kills. As dissolved oxygen concentrations continue to fall, less mobile organisms become stressed and move up out of the sediments, attempt to leave the seabed. As oxygen levels fall from 0.5 mg l⁻¹ toward 0, there is a fairly linear decrease in benthic infaunal diversity, abundance, and biomass.

Entire taxa may be lost in severely stressed seasonal hypoxic/anoxic zones. Larger, longer-lived burrowing infauna are replaced by short-lived, smaller surface deposit-feeding polychaetes, and certain typical marine invertebrates are absent from the fauna, for example, pericaridean crustaceans, bivalves, gastropods, and ophiuroids. Increasing oxygen stress for the Skagerrak coast of western Sweden in semiclosed fjordic areas resulted in declines in the abundance and biomass of macroinfauna, particularly mollusks, suspension feeders, and carnivores. These changes in benthic communities result in an impoverished diet for bottom-feeding fish and crustaceans.

Harmful Algal Blooms

Cultural and natural eutrophication have both contributed to changes in nutrient input to coastal waters, and led to an overall increase in nutrient availability and an alteration in nutrient composition. The first result of these changes is often an increase of total algal biomass and shifts in species composition potentially leading to secondary disturbance such as harmful algal blooms (HABs). HAB species range from marine, brackish to freshwater organisms and cover a broad range of phylogenetic types (dinoflagellates, diatoms, raphidophytes, cyanobacteria). Most HAB species form massive blooms of various colors (red, brown, or green). A few species can produce potent toxins. These toxins can directly kill marine mammals and transfer through the food chain causing harm at different levels from plankton to humans. A potential impact of HABs on human health occurs through the consumption of shellfish that have filtered toxic phytoplankton from the water or planktivorous fish. All poisoning syndromes are serious and can be fatal. They are named paralytic (PSP), diarrhetic (DSP), neurotoxic (NSP), azapiracid (AZP), and amnesic shellfish poisoning (ASP). All syndromes, except for ASP, are caused by dinoflagellates. ASP is caused by diatoms, a group of phytoplankton usually thought to be nontoxic. In tropical and subtropical zones, another human poisoning syndrome, ciguatera fish poisoning (CFP), is caused by toxic dinoflagellates that grow on substrate in coral reef communities. CFP toxins are transferred from herbivorous to carnivorous fish that are commercially valuable. Some algal toxins, brevetoxins, are airborne in sea-spray, causing respiratory distress in coastal population, for example, in the Gulf of Mexico. Cyanobacteria (blue-green algae) naturally bloom in still inland waters, estuaries, and the sea during summer. Some cyanobacteria produce potent cyanotoxins (anatoxins, microcystins, and nodularin), which are dangerous and sometimes fatal to livestock, wildlife, marine animals, and humans. These toxins represent a serious health risk in water bodies used for recreational and/or as freshwater supply reservoirs.

Although references to HABs date back to biblical times, the number of toxic events and subsequent economic losses linked to HABs has increased considerably in recent years around the world. Many reports point out
Numerous new bloom events have been discovered because of increased awareness and improved detection methodologies (e.g., molecular probes for cell recognition, PCR probes for rDNA specific to genera or species of HABs, enzyme-linked immunosorbent assays (ELISAs), remote sensing data from satellites, qualified observers, and efficient monitoring programs). The global increase of aquaculture activities and trade of exotic species has led to improved safety and quality controls that revealed the presence of HAB species and/or toxins in, for example, aquaculture pens, contaminated seafood. Mortality events and toxicity outbreaks in fish or bivalves resources can no longer go unnoticed. Transport of toxic species in ship ballast water undeniably contributes to the increasingly damaging effect of HABs on fisheries, aquaculture, human health, tourism, and the marine and brackish environment. UNEP has recently ranked HABs among the ten worst threats of invasive species transported in ballast water.

Dispersal of HABs is influenced by oceanic and estuarine circulation, and river flow combined with currents, upwelling, salinity, nutrients, and specific life-cycles of various HAB species. The apparent increase in toxic diatoms (Pseudonitzschia spp.) off the US and Canada coast is often coupled to physical forcing (storm, wind, rain, and upwelling) and more rarely to the increase in nitrate-N in rivers, for example, from the Mississippi River. Both nutrient and harmful dinoflagellate taxa are introduced from upwelling/downwelling areas to estuaries, coastal bays, or lagoons, for example, the Atlantic coast of France, Spain, and Portugal, Chesapeake Bay, and the Benguela region. Similar processes are observed for cyanobacteria in the Gulf of Finland. Physical convergence, advection, or accumulation process of oceanic dinoflagellates (Dinophysis, Karenia, and Gonyaulax) in embayments also contribute to the extension of HABs in some areas. Large oceanic current systems transport the N-fixing cyanobacterium Trichodesmium from tropical oligotrophic regions to W. Florida waters, enriched with Saharian iron dust, where it blooms. Some HABs have specific life cycles including resting stages for diatoms (spores), dinoflagellates (cysts), and cyanobacteria (akinetes). These resting stages provide these algae with a competitive advantage over populations that cannot survive in poor conditions.

Climatic and hydrological changes affect nutrient delivery and processing, for example, the input of micro-nutrients and freshwater from rainfall and river flow, flooding after hurricanes, and tropical storms also favor HABs’ growth and persistence. Certain PSP and CFP producers (dinoflagellates) have increased significantly under large-scale changing climatic conditions in temperate environments (Kattegat, NW Spain, and SW Portugal) and in the Indo-Pacific, respectively. Some of these blooms have been linked to the North Atlantic oscillations (NAO) and to El-Niño events that affect local climate in wind-driven upwelling systems.

Despite the importance of natural events in algal bloom formation, many examples relate HABs to anthropogenic activities since World War II. Red tides (dinoflagellates) in Asia, for example, the mouth of the Yangtze Estuary in China and the Seto Inland Sea in Japan, are related to the parallel increasing population density and nitrogen (N) and (P) loadings. Nutrient-enriched conditions in brackish coastal bays and estuaries have been correlated with high abundance of diatoms (central California, Louisiana in the US), dinoflagellates (off the coast of North Carolina – US, Northern Adriatic, Aegean, and Black Sea), and halotolerant cyanobacteria (Baltic Sea, Brazil, Australia), but the direct cause of this relationship is not fully understood. In tropical regions, eutrophication of reef communities often leads to the overgrowth of macroalgae on corals and high coral mortality that favor the bloom of benthic dinoflagellates (CFP producers). Both elevated N and P concentrations and silicon limitation can favor the dominance of HABs, for example, the haptophyte Phaeocystis in the North Sea. Declining silicon input to coastal zones and estuaries is often due to damming of rivers and gives a competitive advantage to marine haptophytes and dinoflagellates over diatoms. The residence time of the water in freshwater systems is increased by the construction of the dams. This allows for the development of freshwater diatom blooms. The silicon-rich frustules of the diatoms are not remineralized as rapidly as organic matter and so dams effectively retain silicon upstream. The ratio of silicon to nitrogen therefore decreases, and estuarine and coastal diatoms may have insufficient silicon to divide. The communities of phytoplankton organisms may therefore shift so that diatoms are replaced by nonsilicon requiring organisms such as dinoflagellates and this may significantly alter the food web.

Many potable water reservoirs are under the pressure of expanding population, and are negatively impacted by both sediment erosion, that is, reduce water flow and elevated N and P loading that will stimulate noxious cyanobacterial blooms. Similar trends are reported for river systems with weir pools. Many HABs have characteristic modes of nutrition from autotrophy to heterotrophy, that is, can use organic carbon, nitrogen, and phosphorus (mixotrophy and osmotrophy). Recent studies have shown that the increase in organic nutrients could benefit certain HABs (dinoflagellates and prymnesiophytes). The global nitrogen-based fertilizer usage has shifted toward urea-based products and is expected to continue. Thus, significant amounts of urea are transported to estuarine and coastal waters with the potential
for increasing eutrophication of these sensitive areas. Since urea is also one very important nitrogen substrate for some HAB species, the global increase of PSP outbreaks is comparable to the increase of urea use for 1975–2005. Aquaculture sites are also a large source of nutrient from animal excreta, rich in N and P, to coastal sediment. Their contribution to HAB formation will depend on the hydrology of the system, for example, HABs proliferate in calm areas.

Among the natural marine environmental contaminants that are health risks, HABs are most prominent. However, the relative effects of natural versus anthropogenic factors on harmful algal blooms cannot yet be resolved.

Dead Zones

Once the consequences of eutrophication are felt in coastal waters, there is little that can be achieved to redress the situation by ecological engineers. The scale of coastal waters and their open boundaries make management difficult or impossible. Examples of this are the dead zones of hypoxic and anoxic waters in the Gulf of Mexico and the Black Sea. Only the surface waters of the Black Sea remain oxic and most of this deep basin is anoxic. Two-thirds of the continental USA agricultural lands drain down the Mississippi into the Gulf of Mexico. The runoff of excess fertilizers increases nutrient inputs and also causes imbalances in the nutrient ratio. The plume of the Mississippi can be seen from satellite imagery but the effects of the nutrients are more widespread and can be detected through remote sensing by the high chlorophyll concentrations from the phytoplankton blooms. This excessive production unbalances the ecosystem and the microbial decomposition of the increased organic matter depletes the water of oxygen leading to hypoxia and even anoxia. The effect is particularly marked during the summer months when the waters are warm and saline, therefore oxygen is less soluble. No effective ecological engineering measures are possible offshore to counter this effect that in some years covers a very large area of the Gulf of Mexico leading to the loss of valuable fisheries. However, the summer is also the hurricane season in the Gulf of Mexico and the turbulence and mixing caused by large and frequent storms can at times break up the ‘Dead’ zone.

Ecological Engineering of Coral Reefs

Coral reefs can be severely degraded with much smaller levels of eutrophication than those needed to impact open waters. As detailed in 00044, coral reefs have a rich biodiversity and they greatly benefit humanity by building islands and atolls, inhibiting coastal erosion, and supporting fisheries and tourism. The destruction of coastal coral reefs is increasing worldwide (e.g., up to 50% in the last 15 years in some Asian countries). There is not one country in the world that has put in place a sustainable coral reef management policy because human activities on land are not incorporated in coral reef management policies. The present coral reef strategy principle relies on drawing a line around selected coral reefs and naming them marine parks or marine protected areas. Corals and its fisheries are protected inside that line. It ignores the fact that the land and the coral reef are ecologically connected through the rivers. As a result, this management practice invariably fails where the corals are impacted by rivers that are impacted by human activities in the catchment.

The health of coral reefs fluctuates naturally in time. Historically, coral reefs have been impacted by natural disturbances such as tropical cyclones and river floods; if good water quality prevailed after these occasional disturbances, reefs have invariably recovered. Nowadays, coral reefs are subject to direct human impacts from land runoff from river catchments impacted by human activities; this results in an increase in suspended sediment and nutrient concentration during the recovery period after a natural disturbance, and from global warming that generates increased bleaching events in summer. Coral reefs are weakened, more frequently diseased, and unable to recover between disturbances; they are thus commonly slowly dying out from failure to recover from disturbances.

The physical forcings of coastal coral reefs are river floods and tropical cyclones that are natural disturbances, and the oceanography that enables the exchange of coral planulae between reefs. The biological forcing is mainly the competition for hard substrate space between the coral and the algae. The recruitment of juvenile coral decreases with increasing algal cover on the hard substrate. Human activities on land increase the suspended sediment and nutrient load, and thus help the algae. Algae are preyed upon by herbivorous fish that is preyed upon by carnivorous fish. The harvesting of herbivorous fish by people also helps the algae. The coral is preyed upon by the crown-of-thorns starfish (COTS), whose population dynamics also appears to be helped by human activities on land resulting in increased nutrient that promotes the plankton that supports the drifting COTS larvae. Additionally, global warming results in an increased mortality of adult corals, or poor health making them more susceptible to diseases or to be attacked by borers.

An ecohydrology model was built that incorporates all these processes. It was applied to the Great Barrier Reef and successfully verified against 20 years of data. The model (Figure 1) suggests that the biodiversity of the Great Barrier Reef is already seriously impacted by human activities and may progressively over a period of...
Coastal waters are increasingly degraded worldwide through human activities on land. Because coastal waters have open boundaries to the ocean, there are no simple local engineering solutions to maintain or restore their ecosystem health and the ecological services that they provide. In coastal waters, further applications of ecohydrology are the use of macrophytes to enhance the internal consumption rate, and benthic suspension feeders, such as bivalve mollusks, sponges, tunicates, and polychaetes, to filter and pelletize excess nutrients and plankton. As detailed in 00055, attempts to restore coastal water quality by planning to restore seagrass beds and coral reefs are bound to fail until the land-use practices that degraded these habitats in the first place are modified.

The only ecologically sustainable management strategy for coastal waters is adopting ecohydrology as the guiding principle for managing human activities on land while at the same time protecting fisheries, implementing a fisheries buy-out program, and using engineering and technology to treat sewage and storm water. Ecohydrology science offers a number of solutions, including top-down and bottom-up ecological manipulation and the creation and restoration of wetlands to help restore the health of rivers and estuarine waters. This ecological engineering approach can be combined with some technological fixes, such as the creation of freshets and smarter land use. This necessitates changing present governmental practices based on political geography or specific activities (e.g., farming, water resources, fisheries, and urban developments). Generally, the political geography limits or the usage units do not coincide with the basin boundaries. The ecohydrology approach also necessitates a high level of collaboration among stakeholders in order to develop best practice. Without these changes, estuaries and coastal waters will continue to degrade worldwide, whatever local integrated coastal management plans are implemented.

This solution is easy to preach and a nightmare to implement, mainly for political and socioeconomic reasons. Worldwide, the implementation of this science-based strategy will most likely stall until a political solution is found to regulate human activities on land. Indeed, local farmers, fishermen, and urban developers are often at odds with the imposition of land use, water resources, and fishery management rules that they claim jeopardize their ability to earn a living.

The coastal water ecosystem modeler is faced with complex processes and feedback processes between the physics and the biology, which often cannot be fully quantified because the data are inadequate. Models should not be seen as able to replace reality and the need for field observations.
Further Reading

