Neuron Based Biosensors

- Definition: a biosensor that uses living neural cells to detect substance of interest
- Why neuron based biosensors?
- Key advantage: a single neuron-based sensor can potentially detect a vast number of chemical and biological agents
 - A healthy neuron generates voltage pulses ("action potentials") spontaneously on the membrane of the axon.
 - Changes in environment (presence of chemicals or biological agents) modulate the neuron’s electrical activity.
 - Neuron exhibits a unique electrical response to particular agents

Review: Detection

• Favored method of detection is Microelectrode Arrays (MEAs).
 – Electrodes fabricated on surface of device
 – Monitor signal externally; doesn’t damage cells
• Neural signals typically in the range of 100s of uVpp
• Many working neuron-based sensors utilize MEAs
• Much research focused on improving control of neural growth on MEAs.

Analysis of Neural Response

• Time domain analysis
 – Characterize response for various substances
 • Amplitude
 • Duration of burst
 • Time interval between bursts

MEA recordings of neural activity
 a) Spontaneous activity
 b) Cyclothiazide
 c) MK-801
 d) NBQX

Source: Chiappalone et al. “Networks of neurons coupled to microelectrode arrays: a neuronal sensory system for pharmacological applications” Biosensor and Bioelectronics, 18:5-6 (2003), 627-634
Analysis of Neural Response

• Frequency domain analysis
 – Example: Prasad et al. 2004: Examine and characterize frequency components of neural response for particular substances

Neural response to hydrogen peroxide

Source: Prasad et al. "Neurons as sensors: individual and cascaded chemical sensing" Biosensor and Bioelectronics, 19:12 (2004), 1599-1610
Challenges

- Controlling interaction of living neuron to device.
 - Ideal of 1:1 association of neurons to electrodes is difficult to achieve
 - Affects signal-to-noise ratio
 - Affects reproducibility and repeatability of response
- Long term maintenance of cells in vitro
- Stability of device (corrosion, biofouling, etc)
Review: Cell Patterning Techniques

Goal is to enhance detectibility of action potentials by patterning neurons over electrodes

Topographical Patterning

Dielectrophoresis

Physical Immobilization

Chemical Patterning

Source: James, et al., 2004.
Cell Patterning Using SAMs

• SAMs form a single layer of molecules on a substrate.
• Advantages:
 – Creates a biocompatible membrane like microenvironment
 • Supporting structure for growth
 • Directs growth
 – Relatively easy to create
 – Long term stability
 – Customizable
• Many Types of SAMs
• Recent research has focused on using thiols on gold substrates
Early work

- Potember (1995)
 - SAM: n-octa-decyltrichlorosilane
 - Selective UV irradiation to remove/pattern SAM
 - Surface made bioactive using synthetic peptide, covalently attached using a cross-linker
 - 5um line widths
 - Optical microscopy to evaluate neural attachment and growth
 - Cells remained restricted to pattern for over 15 days in culture

Thiol-based SAMs

- Structure:
 - Alkane chain, typically with 10-20 methylene units
 - Head group with a strong preferential adsorption to the substrate used. Eg: Thiol (-SH) head groups and Au(111) substrates
 - Tail group gives the SAM its functionality

Source: “Self Assembled Monolayers”
http://www.ifm.liu.se/applphys/ftir/sams.html
Thiols on Au(111)

- Thiol head group bonds to the threefold hollow site on gold surface.
- Van der Waals forces between alkane chain causes them to lie at 30 degree angle

Commonly used SAMs:
- MUA: 11-mercaptopoundecanoic acid
- 11-AUT: 11-amino-1-undecanethiol

Nam et al. 2004

- Contribution: Coated microelectrode arrays with gold in order to use alkanthiol-based SAM techniques
- Technique:
 - Coat MEAs with 50-80A of gold
 - Immerse in MUA solution for 2 hours to create SAM
 - Expose SAM to other compounds to produce layer of NHS esters
 - Use uCP to apply poly-D-lysine. Stable PDL layer created by covalent linking to SAM layer
 - Unstamped areas covered with chemical that inhibits cell growth

Nam et al. 2004

- Results:
 - Demonstrated cell viability on PDL linked gold surface
 - Good resolution stamped 100 x 100um grid pattern of 10um line width
 - Cells complied to pattern for > 2 weeks
 - Recording of *spontaneous* neural activity to verify cell activity.
 - Enhanced amplitudes up to 500uVpp (100-200uVpp typical)
 - Gold MEAs were not reusable

Nam et al. 2006

• Updated process
 – different SAM 3-glycidoxypropyl trimethoxysilane (3-GPS)
 – uCP for protein pattern stamping

• Results
 – Neurons complied to patterns for 2-3 weeks
 – Spontaneous neural activity recorded:
 • Note SAM increased impedance by factor of 2-3
 • Mean SNR of 6.5 at 2 weeks
 • Mean amplitude of extracellular spikes was 25uV_{pp} at 7 DIV and 50uV_{pp} at 20-24 DIV.
 • Background noise $2.9 \text{uV}_{\text{pp}}$

Source: Nam et al. “Epoxy-silane linking of biomolecules is simple and effective for patterning neuronal cultures.” Biosensors and Bioelectronics 22 (2006) 589–597
Palyvoda et al. 2007

- **Technique:**
 - Create gold electrodes
 - Immerse in 11-AUT solution to create SAM
 - Studied effect of pad size on neural guidance

- **Contribution:** used SAM to support and guide neural growth directly
 - No intermediate protein layer, e.g. polylysine (which is difficult to pattern, nonphysiological, toxic under some conditions)

Image of neurons on 50x50um SAM coated gold electrode
• Results
 – Effects of pad size on cell counts:
 • 350x350um: 57 +/- 10
 • 200x200um: 16 +/- 5
 • 100x100um: 4.14 +/- 2
 • 50x50um: 1 +/- 0.87
 – 50x50um pad size comes close to single neuron immobilization, with error.
 – No measurement of electrical activity was performed

Other Characterization Studies

• Naka et al. (2002)
 – Investigated effects of different functional tail groups of thiol based SAMs on neuron growth: Amino groups (NH2), carboxyl (COOH), methyl (CH3).
 – Concludes 11-amino-1-undecanethiol is best
 – Neurons detach after about 2 weeks.

• Slaughter et al. (2004)
 – Characterized protein attachment to two thiol SAMs on gold electrodes using florescence microscopy, atomic force microscopy, and ac impedance.

• Faucheux et al. (2004)
 – Characterized SAM with various functional groups by examining wettability, layer thickness, and roughness
 – Examined protein adsorption to these SAMs
Other Recent Studies

- **Romanova et al. (2006)**
 - Studied how chemical modifications to SAM affected neuron growth and neurite extension.

- **Widge et al. (2007)**
 - Studied how mixed SAMs of thiol and conductive polymers affected electrical impedance and phase of gold coated MEAs.
 - Adding conductive polymers reduces impedance by adding surface area (roughness).

- **Lin et al. (2008)**
 - Characterized physical structure (thickness, bonding characteristics) of gold electrodes modified MUA-SAMs coated with poly-D-lysine using infrared reflection and AFM.
 - Demonstrated that neurons adhere better to MUA-SAM modified gold electrodes better than to bare gold.
Conclusions

• Neuron-based biosensors appear poised to become an effective biosensor technology.

• Challenges:
 – Stability of culture and micro device
 – Reproducibility of results
 – Maintaining health of cells over long term
Conclusions

• SAMs are attractive as a possible solution to these challenges
 – Relatively simple compared to other options
 – Highly biocompatible
 – Customizable
 – Increases stability of neuron-device interface

• But…
 – 10-15 years or more of characterization studies of SAMs
 – No fully functional SAM-based biosensor for specific application to date
Questions?
References

References

